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ABSTRACT

An experiment to be carried out aboard the International
Space Station is described. A suspension consisting of
millimeter-sized bubbles in water containing some
dissolved salt, which prevents bubbles from coalescing,
will be sheared in a Couette cylindrical cell. Rotation of
the outer cylinder will produce centrifugal force which
will tend to accumulate the bubbles near the inner wall.
The shearing will enhance collisions among bubbles
creating thereby bubble phase pressure that will resist the
tendency of the bubbles to accumulate near the inner wall.
The bubble volume fraction and velocity profiles will be
measured and compared with the theoretical predictions.
Ground-based research on measurement of bubble phase
properties and flow in vertical channel are described.

INTRODUCTION

Hydrodynamic interactions and direct particle collisions
can have a dramatic influence on the flow properties of
suspensions in which the disperse phase volume fraction
is 0.1 or greater. Over the last thirty years analytical
theories, numerical simulations, and careful experiments
using well defined suspensions in simple flows have
provided considerable progress toward a quantitative
description of the rheology of concentrated, low Reynolds
number (based on particle size and characteristic velocity)
suspensions (i.e., Nott and Brady 1994).  The effects of
dispersed particles, drops, or bubbles with the high
Reynolds number flow of a suspension is likely to be even
more dramatic because of the enhanced transport of

momentum due to Reynolds stresses. However, most
previous theories of high Reynolds number suspensions
have considered only interactions of particles with the
mean flow while neglecting particle-particle interactions.

The treatment of particle interactions in inertial suspensions
is more difficult than in viscous suspensions for several
reasons. The equations of motion for a low Reynolds
number fluid are quasisteady and linear, indicating that
the flow responds instantaneously to changes in the particle
configuration. This feature is essential to the methods of
theoretical analysis and numerical simulations used to
treat most low Reynolds number suspensions. A general,
moderate or high Reynolds number flow is neither quasi-
steady nor linear with the result that the fluid flow at any
instant in time in inertial suspensions depends on the time
history of the particle positions and velocities and one
cannot use the analytical and numerical techniques
developed for small Reynolds number, linearized equations
of motion. As a result, little is known about the equations
of motion for inertial suspensions of particles or drops.

However, there is a special case of an inertial suspension
that is particularly amenable to theoretical analysis: a
suspension of surfactant-free, spherical, high Reynolds
number bubbles. In this case, the vorticity produced by the
bubble motion is small and the flow induced by the
bubbles may be described using the potential flow
approximation.6 The fluid velocity may then be expressed
as the gradient of potential obtained by solving Laplace’s
equation. It is possible then to derive from first principles
the equations of motion for this type of bubble
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suspension.2,4,10,13,16 In addition, numerical simulation
of motion of many interacting bubbles can be conducted
to aid in developing the equations of motion for such
bubble suspensions. The potential flow approximation is
applicable in the limits of high bubble Reynolds number
and small Weber number We= ρVc

2 a/σ , ρ being the
liquid density, Vc the bubble characteristic velocity, a the
bubble radius, and σ the interfacial tension. It also requires
that there be negligible Marangoni effects, so that the
tangential stress at the gas-liquid interface is negligible.
Comparison between measured rise velocities of gas
bubbles in water and theoretical predictions indicate that
the potential flow theory for spherical bubbles is reasonably
accurate for bubbles of about 1-mm-diameter and the
agreement between the theory and experiments can be
improved further by including the effects of bubble
deformation.3,7

In addition to the theoretical simplification of the equations
of motion at low Reynolds numbers, studies of viscous
suspensions have been benefitted from the ability of
experimental researchers to isolate and study separately
the effects of buoyancy and shearing motion on the
suspension structure and rheology. Simple shear flow of a
viscous suspension can be obtained by matching the
density of the fluid and the particles and/or using a very
viscous fluid so that the particles do not settle appreciably
during the time of the experiment. While density matching
is possible,1 it cannot be used for bubble suspensions
which are most amenable to theoretical treatment.

Equations of motion for bubble suspensions with particular
attention to the effects of shearing motion have been
developed.4 For simplicity, bubble-bubble coalescence
was neglected. Coalescence can be greatly reduced or
avoided without introducing Marangoni effects by using
an aqueous electrolyte solution as the continuous phase.
Shearing a bubble suspension drives bubble-bubble
collisions and the work done to shear the suspension
provides a source of kinetic energy for the randomly
fluctuating motions of the bubbles. This kinetic energy is
dissipated by viscous drag and the balance of shear work
and viscous dissipation creates a steady state bubble-
phase kinetic energy. The bubbles’ random motion and
bubble-bubble collisions drive bubbles from regions of
high volume fraction to regions of low volume fraction:
this phenomenon is described in terms of a bubble-phase
pressure. In addition, the bubbles give rise to an effective
viscosity that increases the tangential stress required to
shear the bubbly liquid. A critical test of these novel,
theoretical predictions requires a microgravity experiment
in which the effects of shearing can be isolated and
measured without the confounding influence of buoyancy
driven motion.

In addition to their role as a model suspension for which
the inertial effects can be studied analytically, the bubble
suspensions are also of considerable practical importance
as they are encountered in nuclear reactors, fermenters
used in biotechnology, and bubble column reactors.
Equations of motion of bubbly liquids validated with
simple, well defined experiments will be useful in designing
the equipment used in these processes. It is also expected
that the experience gained with the microgravity
experiment will help predict the behavior of bubble
suspensions to be encountered in space processing.

Section 2 describes briefly the experiment to be carried
out aboard the International Space Station. Section 3
describes the ground-based and low gravity-based research
aimed at developing techniques for creating nearly uniform
sized, noncoalescing bubble suspensions and measuring
bubble volume fraction and velocity distribution. These
techniques are being used to study buoyancy driven flow
in vertical and inclined channels. Section 4 outlines
theoretical framework that will be tested through the
experiments.

THE MICROGRAVITY EXPERIMENT

Figure 1 shows the schematics of the experiments to be
carried out on the International Space Station. A suspension
of gas bubbles of approximately 2-mm-diameter in an
aqueous solution will be created inside a cylindrical Couette
cell. The centrifugal force produced by rotating the outer
cylinder will drive the bubbles toward the inner cylinder
of the Couette device. However, the shear flow in the gap
will create randomly fluctuating bubble velocities and an
associated bubble phase pressure. This pressure will resist
the accumulation of bubbles and lead to steady state
profile of bubble phase volume fraction as a function of

Figure 1.—Schematic of the 
   experiment to be carried 
   in the Couette cell.
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radial position. Hot-film anemometers and dual impedance
probes to be described in the next section will be traversed
across the gap to determine the bubble volume fraction,
velocity, and velocity variance. In addition, a hot film
probe mounted flush with the wall will be used to determine
the wall shear stress. A comparison of experimentally
measured volume fraction, velocity, and velocity variance
profiles and wall shear stress with theoretical predictions
will provide a critical test of the averaged equations of
motion for bubble suspensions and in particular will
demonstrate the importance of the bubble phase pressure
and viscosity.

Although there is no Taylor-Couette instability when the
outer cylinder is rotated, there is still a transition to
turbulent flow at significantly high shear rates.14 This
transition will occur in pure water in our Couette design at
a shear rate of 27 s–1. We will conduct some of our
experiments well below this critical shear rate so that we
can be assured of laminar flow. However, an interesting
question that the experiment will help us address is whether
the effective viscosity produced by the random shear
induced bubble velocities will stabilize the flow.
Photography of the Couette cell and examination of the

spatial and temporal correlations of the probe signals will
be used to test for flow instabilities.

GROUND-BASED AND LOW GRAVITY-BASED
EXPERIMENTS

Ground-Based Experiments

The ground-based experimental research is focused on (i)
producing nearly monodisperse, noncoalescing bubble
suspensions; (ii) developing probes for measuring volume
fraction and velocity profiles of bubbles; (iii) understanding
bubble-wall interactions; and (iv) measurements for flow
induced by buoyancy in vertical and inclined channels.

The experimental setup for measurements in vertical
channel is shown in Figure 2. The plexiglass cell has a 2-
by 20-cm cross-section and the height of 200 cm. Nitrogen
gas is introduced at the base of the channel through an
array about 100-µm-diameter and 65-mm-long capillaries
arranged in a hexagonal array with about 28 capillaries per
square cm. The flow rate per capillary used in the
experiments is small enough so that the bubble size could
be expected to be independent of flow rate.9,17 A 0.05

Figure 2.—Experimental setup of ground-based vertical channel experiments.
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molar solution of MgSO4 in water was used to inhibit
coalescence.

Figure 3 shows photographs of the bubble suspension at
volume fractions of 0.05 and 0.10. The bubbles are seen to
be nearly monodisperse with an average diameter of about
1.5 mm. Also seen is evidence of clustering of the bubbles
in the plane normal to gravity, although the extent of
clustering is not as great as seen in the numerical simulations
based on potential flow.11,12,15

Figures 4 and 5 show, respectively, the hot-wire and dual
impedance probes used for the measurements. The voltage
signals from the dual impedance probes can be
autocorrelated to determine the velocity distribution of the
bubbles near the probe. The data obtained from the hot-
wire can be used to determine the liquid velocity variance
and the  frequency of collisions between the bubbles and
the probe. The latter can be related to the bubble volume
fraction and velocity variance.

Representative measurements made with these probes
and the setup for vertical channel are shown in Figures 6
to 8. Figure 6 shows the aspect ratio of the bubbles as a

function of bubble volume fraction. At larger volume
fractions the rise velocity of the bubbles decreases and this
causes a decrease in the Weber number, the ratio of inertial
to surface tension forces, resulting in bubbles that are less
deformed at higher volume fractions. The solid line in the
figure corresponds to Moore’s prediction7 based on an
analysis of a single bubble. The bubble phase velocity
variance as a function of volume fraction is shown in
Figure 7. We see a nearly linear dependence. The results
for larger volume fractions extrapolated to zero volume
fraction, however, do not give zero variance at zero
volume fraction. The wall effects are responsible for this
anomalous behavior.17 Figure 8 shows average rise
velocity as a function of bubble volume fraction. Once
again the behavior for very dilute bubble suspensions is
seen to be different from that obtained by extrapolating
higher volume fraction results to small volume fractions.

Low Gravity-Based Experiments

Low gravity-based experiments performed on the KC-
135 low gravity facility are focused on the implementation
of the diagnostics used for measurement of the local
bubble volume fraction and velocity profiles.  These
experiments are also aimed at the verification of
performance of a bread-board Couette system which
includes the Couette cell, a two-phase separator, probe
diagnostics, and bubble generation subsystem.

The Couette assembly includes a 30-cm-high Couette
consisting of a 24-cm-diameter 303 SS stationary inner
wall, and 30-cm-diameter acrylic outer wall.  The Couette
holds approximately 7.6 liters of water between the inner
and outer cylinders. Magnesium sulfate (MgSO4) salt will
be added to the water in the Couette to create a 0.05 molar
solution to inhibit bubble coalescence. The outer wall is
optically clear and is constructed from one piece of acrylic.
The outer cylinder rotates from 0 to 100 rpm using a 1/2
HP motor with speed controller.  The inner wall consists
of 4 segments of the inner cylinder mounted together
using 4 splice plates. A (3- by 3-cm) acrylic window is
mounted to one of the 4 inner wall segments for imaging
the bubbles near the inner wall. The acrylic top and
stainless steel bottom of the Couette rotate with the outer
cylinder.  The bottom includes acrylic windows to provide
a light source for illuminating the Couette. The Couette
bottom seal material is polymer filled Teflon®. The top
uses the same, but a smaller seal design. Two seals provide
double containment at all sealing surfaces on the Couette
except for the splice plates on the inner cylinder that are
equipped with a single gasket seal. The Couette assembly
is designed and verified to withstand 7.5 psig. Figure 9
shows a picture of the Couette integrated into the KC-135
rig.

(b)

Figure 3.—Bubble size and distribution for typical 
   mean gas volume fractions �. The spacing in the 
   grid is 1 mm. (a) � = 0.05. (b) � = 0.10.

(a)
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Figure 4.—Schematic of the hot-wire probe and its orientation with 
   respect to the mean bubble motion.
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Figure 5.—Schematic of the dual impedance probe. The figure is drawn to scale.
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Figure 6.—Bubble aspect ratio, �, as a function of mean gas volume fraction, �. 
   The bars indicate the bubble aspect ratio standard deviation. Measurements 
   obtained 50 cm above the bubbler. The solid line presents the prediction from 
   Moore's work, 1965.
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Bubbles are produced in the Couette through 19 capillary
tubes (0.02-in.-diameter) spaced equidistant along the
height of the Couette and attached to one of the splice
plates on the Couette inner cylinder.  The 19 bubblers
translate in and out of the Couette (0 to 2.5 cm from the
inner wall), driven by 5VDC, 4.6W motor.  The position
of the bubblers relative to the stationary inner wall affects
the bubble size produced. An identical motor drives a
similar mechanism that supports an impedance and a hot
wire probe.

The hot wire probe (used to determine the fluid velocity)
and dual impedance probes (used to determine bubble
location and velocity) are mounted to the splice plate 90
degrees counter-clockwise from the bubblers and travel
from 0 to 2.5 cm across the 3 cm gap between the inner and
outer wall of the Couette.  This hot wire probe has a conical
tip and is expected to be more rugged than previous wire
probes.  A new signal conditioning unit has been designed
and fabricated for the impedance probe circuits.

The separator assembly consists of an acrylic cylindrical
chamber that houses 2 concentric acrylic cones with holes
machined into the cone sides.  The chamber is coupled to
a motor that spins the cones at approximately 2500 rpm.
When a mixture of gas and liquid enter the separator in the

volume between the cones, the liquid is forced to the
outside through the holes in the spinning cones into the
cylindrical chamber.  The gas in the separator forms a
distinct core at the center of the inner cone.  A gas/liquid
detector is mounted in the separator and software control
is used for automatic operation. When gas is detected, a
solenoid valve opens and the gas is removed by a vacuum
pump. When liquid is detected, the solenoid valve closes
so that no liquid is removed through the gas vent line.  A
pump is used to remove the gas/liquid mixture from the
Couette test chamber into the separator.  The same pump,
pushes the bubble free water back into the Couette test
chamber in preparation for making a new bubble suspension
that the researchers are interested in studying.  Figure 10
shows a picture of the separator used to separate the gas-
liquid mixture in low gravity.

Video cameras (high and normal speeds) are used to study
the bubble generation and to assess the bubble size
distribution, coalescence, and bubble-probe interactions.

THEORY

The equations of motion for large Reynolds number,
spherical bubble suspensions have been derived from first
principles using theory and numerical simulations.13 The
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Figure 7.—Normalized bubble vertical velocity variance as a function of mean 
   gas volume fraction. The solid squares show the measurements using the 
   dual impedance probe. The dashed and dash-dot lines represent the values 
   of A used for the bubble velocity predictions for Spelt & Sangani (1998); the 
   dotted line is the fit to the measurements. The circle shows the bubble 
   velocity variance measured for a single bubble in the channel. The diamond 
   represents the bubble velocity variance measured in a very dilute suspension.
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equations consist of two sets: one for the bubble phase and
one for the mixture of gas and liquid. The bubble phase
equations are
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where φ is the bubble volume fraction, t the time, Vi the
average bubble velocity relative to the mixture velocity
Ui, Ii the virtual momentum of the bubbles, n the number
density of the bubbles,  Pij the bubble phase stress tensor,
m the volume of the bubble multiplied by the liquid
density, gi the gravitational acceleration, a the radius of
the bubbles, Cd the drag coefficient,  µ the liquid viscosity,
d/dt the time derivative following the motion of bubbles

and D/Dt the time derivative following the motion of the
gas-liquid mixture. The virtual momentum of the bubbles
is given by  Ii=(m/2)CaVi, Ca being the virtual mass
coefficient. The bubble-phase stress is given by
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where T is the bubble phase temperature, defined as one-
third of the bubble velocity variance, χ the radial
distribution function value at 2a,  κ and µs the bubble-
phase viscosities, Gi=-(Ca/2+1)Vi, and eij the rate of
strain tensor for the bubble phase. The isotropic part of the
bubble phase stress is the bubble phase pressure. The
bubble-phase stress and the other properties such as the
bubble-phase viscosities depend on the bubble phase
temperature and therefore an additional equation is required
for the balance of bubble fluctuation energy. This equation,
the continuity and momentum equations for the mixture,
and the closure relations for the bubble phase viscosity,
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Figure 8.—Bubble velocity as a function of mean gas volume fraction. The solid 
   squares show the measurements using the dual impedance probe. The lines 
   show the predictions from Spelt & Sangani (1998) using u� = 0.320 m s–1 and 
   different values of the parameter A: - - -, A = 10; – . –, A = 20; . . ., A = A(�) 
   from experiments. The filled circle shows the terminal velocity of a bubble 
   moving in a large channel (u� = 0.320 m s–1). The empty circle shows the 
   velocity measured for a single bubble in the experimental channel. The 
   diamond shows the measurement for a very dilute suspension in the channel.
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virtual mass coefficient, and viscous drag coefficients
may be found in reference 13.

Modifications needed to account for the deviation of the
bubbles from the spherical shape were determined in a
recent study by Kushch.5 This study also examined in
detail the problem of collision between two deformable
bubbles in the presence of electrolytes which induce short-
range repulsive force between the bubbles and conditions
for which the short-range repulsive potential will not be
sufficient to arrest the motion of bubbles towards each
other leading to coalescence.

The above equations must be supplemented with
suitable boundary conditions at wall. The wall-bubble
interactions are being currently investigated both
analytically and experimentally and numerical
simulations will be carried out for different kinds of
boundary conditions to determine their influence on
the bubble volume fraction and velocity profiles. These
will be compared with the experiments carried out in
vertical and inclined channels.
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Behavior of Rapidly Sheared Bubble Suspensions
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Cape Canaveral, Florida, October 15–18, 2001. A.S. Sangani and V.I. Kushch, Syracuse University, Department of Chemical Engineer-
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An experiment to be carried out aboard the International Space Station is described. A suspension consisting of
millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared
in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate
the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase
pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and
velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement
of bubble phase properties and flow in vertical channel are described.


